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ABSTRACT 

Harnessing the power of currents from the sea bed, tidal 

power has great potential to provide a means of renewable 

energy generation more predictable than similar 

technologies such as wind power.  However, the nature of 

the operating environment provides challenges, with 

maintenance requiring a lift operation to gain access to the 

turbine above water.  Failures of system components can 

therefore result in prolonged periods of downtime while 

repairs are completed on the surface, removing the system’s 

ability to produce electricity and damaging revenues.  The 

utilization of effective condition monitoring systems can 

therefore prove particularly beneficial to this industry.   

This paper explores the use of the CRISP-DM data mining 

process model for identifying key trends within turbine 

sensor data, to define the expected response of a tidal 

turbine.  Condition data from an operational 1 MW turbine, 

installed off the coast of Orkney, Scotland, was used for this 

study.  The effectiveness of modeling techniques, including 

curve fitting, Gaussian mixture modeling, and density 

estimation are explored, using tidal turbine data in the 

absence of faults.  The paper shows how these models can 

be used for anomaly detection of live turbine data, with 

anomalies indicating the possible onset of a fault within the 

system. 

1. INTRODUCTION 

Tidal power has great potential worldwide to be a major 

contributing source of renewable energy.  It is a European 

target for 20% of energy generation to come from renewable 

resources by 2020, as stated in the European Union 

Committee  27
th

 Report of Session 2007-08.  Within the UK 

alone, tidal stream generation could potentially supply over 

4 TWh per year within the next 5 to 10 years, with the 

potential to reach up to 94 TWh per year with an installed 

capacity of 36 GW (King & Tryfonas, 2009), around 26% 

of the total electricity generated within the UK in 2013 (UK 

Government electricity statistics).  It is therefore clear that 

tidal energy has the potential to provide a major contribution 

to renewable sources of energy. 

However, tidal power technology is in its infancy, and no 

clear tidal turbine design has emerged as an industry 

standard for extracting energy from tidal flow.  The state of 

the art in turbine design includes many horizontal and 

vertical axis solutions, some with major structural and 

operational variations (Aly & El-Hawary, 2011).  However, 

a common focus is the horizontal axis design, holding many 

similarities with a standard wind turbine. 

Maintenance on tidal turbines requires a lift operation to 

access the turbine above sea-level.  This can be a costly and 

lengthy procedure, resulting in prolonged periods of 

downtime.  An effective condition monitoring system would 

therefore be of great benefit to this industry, allowing the 

health state of system components to be known, and 

allowing maintenance to be scheduled efficiently.  

Condition monitoring has already been well established for 

the wind industry.  However, despite similarities between 

tidal and wind power turbine design, the operating 

environment is vastly different.  Water is over 800 times 

denser than air and, despite slower flow rates (around 3 m/s 

compared to around 15 m/s for offshore wind), tidal flow 

has a much higher kinetic energy compared to wind flow 

(Winter, 2011).  This causes tidal turbines to operate with 

higher torque and thrust loading, inducing increased stress 

on the machine, particularly on the low speed stages of the 

drive train.  Additionally, the marine environment provides 

other complications, such as corrosion and interaction with 

plant and animal life.  Furthermore, there is limited 

historical data of failures from tidal turbines required to 
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implement condition monitoring techniques used as 

standard in the wind industry. 

This paper focuses on using anomaly detection techniques 

for identifying developing faults within tidal turbines with 

limited historical data.   Using the CRISP-DM data mining 

methodology (Wirth & Hipp, 2000), key relationships 

between sensor data parameters from an operational tidal 

turbine were identified, describing the normal response of 

the turbine over variable operating conditions.  These trends 

were then defined using several modeling techniques, 

allowing for deviations from expected data patterns to be 

detected from live turbine data, alerting the operator to the 

possible onset of a fault.  The implementation of an 

intelligent condition monitoring system is also discussed, to 

integrate a number of seperate models together through a 

decision system to assess the state of the turbine and its 

components. 

1.1. HS1000 Turbine 

The data examined within this paper was sourced from the 

Andritz Hydro Hammerfest HS1000 turbine (Figure 1).  The 

HS1000 is an operational tidal turbine with a rated power of 

1 MW, deployed off the coast of Orkney, Scotland, as part 

of the European Marine Energy Centre (EMEC). 

 

Figure 1. The Andritz Hydro Hammerfest HS1000 tidal 

turbine 

The turbine has an open-blade horizontal axis design, fixed 

to the seabed.  Similar to a wind turbine, its drive train 

consists of a gearbox connected to an induction generator, 

translating tidal speeds of around 3.5 m/s to rotations 

exceeding 1000 RPM within the generator.  The turbine has 

no yaw, with blades rotating in opposite directions in 

response to upstream and downstream tides.  Pitch control 

of the blades is used to control the output power produced. 

This paper will focus on data from the following sources: 

 Tri-axial generator vibration velocity 

 Gearbox vibration velocity 

 Bearing vibration velocity 

 Bearing displacement 

 Bearing temperature 

 Generator rotor speed 

 Output power 

1.2. Data Mining 

Data mining is the analysis of large data sets for knowledge 

discovery.  It involves the use of processing techniques, 

involving statistical, machine learning and visualization 

methods, to extract patterns and relationships hidden within 

data parameters (Olson & Delen, 2008).  Data mining has 

been commonly used by banking and marketing firms, and 

also within the medical field applied to vast amounts of 

patient records for improved diagnosis and prediction 

(Maimon & Rokach, 2005). 

Within this study, data mining was used to discover trends 

and relationships between parameters within initial datasets 

from the HS1000 tidal turbine.  A modeling stage then 

defines the expected response of the turbine over its typical 

range of operating conditions.  By comparing live turbine 

data to these models, anomaly detection is used to indicate a 

change in the response of the system, indicating the possible 

onset of a fault. 

1.2.1. CRISP-DM  

The CRISP-DM (Cross-Industry Standard Process for Data 

Mining) process model was utilized for this study.  This 

model manages the data mining process as six key stages: 

business understanding, data understanding, data 

preparation, modeling, evaluation, and deployment (Wirth 

& Hipp, 2000).  These stages are shown in figure 2. 

 

Figure 2. The CRISP-DM process model for data mining 

(Wirth & Hipp, 2000) 

Each stage of the CRISP-DM process model was employed 

as follows: 

 Business Understanding – Understand the operating 

environment of the turbine and how condition 

monitoring may be used to assess turbine health. 

 Data Understanding – Use statistical analysis to identify 

key parameters, relationships, and trends to learn the 
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response of sensor data over standard operating 

conditions. 

 Data Preparation – Organize sensor data before 

modeling, trending data and grouping by tidal cycle and 

operating state of the turbine. 

 Modeling – Model key trends and relationships using 

curve fitting, Gaussian mixture modeling and kernel 

density estimation to define the response of data 

parameters over varying operating conditions. 

 Evaluation – Evaluate the performance of each model, 

using past operational data to train and test models for 

anomaly detection. 

 Deployment – Compare live data to models and identify 

deviations from expected behavior, integrating multiple 

models together through an intelligent condition 

monitoring system. 

2. BUSINESS UNDERSTANDING  

The business understanding phase of the CRISP-DM 

process model involved an appreciation of the operating 

environment and its effect on the expected response of the 

turbine.  The role of condition monitoring within the field 

was also considered.  

2.1. Condition Monitoring 

The use of sensor data from turbine components (such as the 

gearbox, generator, bearings, blades, etc) can allow the 

onset of faults to be detected before they cause failure.  This 

enables an efficient maintenance strategy to be employed, as 

maintenance can be scheduled to reflect to the known health 

of system components. 

Examples of previous research on condition monitoring for 

tidal turbines includes: 

 A review of condition monitoring and prognostic 

techniques applicable to tidal turbines (Wald, 

Khoshgoftaar, Beaujean & Sloan, 2010). 

 Use of Failure Modes and Effects Analysis (FMEA) to 

detect faults and failures within tidal turbines (Prickett, 

Grosvenor, Byrne, Jones, Morris, O’Doherty & 

O’Doherty, 2011). 

 Design of a dynamometer for simulating tidal turbine 

bearing faults, and application of wavelet based 

monitoring (Duhaney, Khoshgaftaar, Sloan, Alhalibi & 

Beaujean, 2011). 

 Fatigue analysis of tidal turbine blades (Mahfuz & 

Akram, 2011). 

However, since tidal turbines have limited deployment, 

there are few examples of condition monitoring systems 

implemented in practice reported in the literature. 

2.2. Turbine Operation 

The EMEC test site in Orkney experiences a semi-diurnal 

tide, with corresponding high and low tides each day.  

Upstream and downstream tidal flow is experienced by the 

HS1000 turbine in cycles between each high and low tide. 

Figures 3 and 4 demonstrate the response of the turbine to a 

single tidal flow cycle, detailing generator rotor speed and 

output power.  The rotation of the turbine is controlled 

through a combination of blade pitching and torque control 

through a frequency convertor.  Generator rotor speed is 

held at approximately 800 RPM at low tidal flow rates, 

increasing to a value of over 1000 RPM as the flow rate 

increases.  Output power varies more gradually with tidal 

flow rate, reaching a maximum of around 1 MW. 

It is expected that these parameters will be most indicative 

of turbine operation, driving relationships with other data 

parameters as turbine components respond to changes in 

loading due to variation of tidal flow. 

 

Figure 3. Trend of output power against time for a single 

tidal cycle. 

 

Figure 4. Trend of generator rotor speed against time for a 

single tidal cycle. 

3. DATA EXPLORATION 

Within this study, the data understanding stage of the 

CRISP-DM data mining process involved a statistic analysis 

of data parameters.  Principal component analysis and 

correlation were used to reveal key relationships between 

parameters, indicative of normal operation of the HS1000 

turbine over a range of operating conditions.  This analysis 

also revealed differences in the response of the turbine to 

opposing tidal flow directions. 
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3.1. Principal Component Analysis 

Principal component analysis (PCA) is a technique used to 

extract and remove linear correlations from a set of 

multivariate data (Pearson, 1901).  This technique generates 

a set of principal components, which are the uncorrelated 

parameters underlying the observations within the data 

(Abdi & Williams, 2010).  

Components are a list of coefficients, representing a weight 

for each input parameter, and an eigenvalue. Parameters 

with high weightings are the highest contributors to 

relationships within the data, and parameters with low 

weighting contribute the least.  A component’s eigenvalue is 

representative of the significance of a component to the 

data. 

Results for this analysis returned components with high 

coefficient weightings for output power and generator 

rotation speed values, with high corresponding eigenvalues 

(in the range of 1x10
3
 to 1x10

5
). This confirmed these 

parameters were highly relevant within the data, driving 

relationships between other data parameters. 

3.2. Correlation 

Correlation describes the statistical relationship between 

two variables or data sets.  This can be expressed via 

Pearson’s correlation coefficient, which is a value 

describing the linear dependence of two parameters 

(Rodgers & Nicewander, 1988). This value ranges between 

+1 (an ideal increasing linear relationship) and -1 (an ideal 

decreasing linear relationship).  Parameters with a 

correlation coefficient of zero have no association to each 

other. 

Pearson’s correlation coefficient was calculated for every 

pair of data parameters.  High correlation was consistently 

seen in output power and generator rotor speed parameters, 

confirming these parameters are key to the response of other 

sensor data parameters (in particular gearbox and generator 

vibrations).  Therefore, for the modeling stage of data 

mining, all other data parameters (including vibration, 

displacement and temperature readings from the gearbox, 

generator and bearings) were trended against output power 

and generator rotor speed.  These relationships describe the 

response of turbine components over a range of varying 

operating conditions. 

Comparison of these values also highlighted a change in 

system response between upstream and downstream tidal 

flows.  This was expected as changes in tidal flow direction 

alter the direction of loads on the turbine.  As a result, for 

the following stage of analysis, data was batched by tidal 

cycle and categorized by tidal flow direction. Separate 

models were then constructed to define the expected turbine 

response for both tidal flow directions. 

3.3. Visual Analysis 

Visual analysis confirmed meaningful relationships were 

generated by plotting data parameters against output power 

and generator rotor speed. 

Trends against output power showed a spread of data across 

the full range of output power. This is expected, since the 

turbine generates at all tidal flow rates, and the output power 

is proportional to tidal flow.  Figure 5 shows an example of 

gearbox vibration trended against output power for a single 

upstream tidal cycle. 

Trends against generator rotor speed exhibited a less 

consistent spread of data, with points grouping in specific 

regions of the plot.  This is because the generator rotor 

speed dictates the frequency of output power, which must be 

within defined limits to export power to the grid. Therefore, 

above the cut-in tidal flow rate, generator rotor speed 

increases immediately to approximately 800 RPM. Figure 6 

shows an example of this trend, with generator vibration X-

axis trended against generator rotor speed. 

 

Figure 5. Trend of gearbox vibration against output power. 

 

Figure 6. Trend of generator vibration X-axis against 

generator rotor speed. 

4. DATA PREPARATION 

The data preparation stage of the CRISP-DM model 

involved the organization of data before modeling, once key 

relationships had been identified. 

Data was batched by tidal cycle, with upstream and 

downstream tidal flow data separated.  Data parameters 

were then trended against output power and generator rotor 

speed. 
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Also at this stage, four key regions of data were defined, to 

further segment data before models were constructed.  

These regions were representative of the operating state of 

the turbine, and defined using change point analysis (Killick 

& Eckley, 2013) applied to the speed-power curve of the 

turbine. 

4.1. Change Point Analysis 

Change point analysis is a technique used to find a series of 

points within data parameters where changes in the data are 

most significant.  Change points are determined by 

calculating a vector of the sum of differences between each 

data point and the mean of all data points.  The maximum or 

minimum point on this vector will indicate the location of a 

change point (Killick & Eckley, 2013).  This process can be 

repeated to find additional change points within each newly 

identified region. 

Four regions of operation were visible from the speed-

power curve (figure 7): 

1. Start up and shut down region 

2. Constant rotor speed region 

3. Increasing rotor speed region 

4. Turbine rotor speed and power limitation region 

Figure 7 shows the result of change point analysis in 

defining these operating state regions.  Separating these 

regions allowed the effects of the turbine’s control scheme 

to be seen across other data parameters and was used to help 

partition data for use with anomaly detection techniques. 

Figure 8 demonstrates how each operating region shapes the 

trend of gearbox vibration against output power.  Changes 

in operating state can be clearly seen as maximum and 

minimum turning points in vibration level. 

Figure 9 shows how groups of data are formed by the 

operating state of the turbine.  Separating data points by 

operating regions allow these groups of data to be isolated 

and modeled separately. 

 

Figure 7. Turbine operating regions identified by change 

point analysis applied to speed-power curve. 

 

Figure 8. Turbine operating regions over gearbox vibration 

trended against output power. 

 

Figure 9. Generator vibration X-axis trended against 

generator rotor speed, separated by turbine operating region. 

5. MODELING 

With parameters trended against output power and generator 

rotor speed, a number of techniques were employed to best 

define the response of the system. Two types of 

relationships were observed between parameters: those 

where data was evenly spread throughout the trend, 

exhibiting patterns that could be modeled by an individual 

function; and those where data points tended to cluster 

within specific areas of a plot. 

Curve fitting was used to define even spreads of data, fitting 

a function to the envelope of the trend or the entire trend 

itself. Within the data, this was applicable for vibration data 

trended against output power. 

Gaussian mixture modeling and kernel density estimation 

techniques were used for defining relationships where data 

points clustered within specific areas.  Clusters of data were 

separated by operating region (as in section 4.1), with areas 

defined probabilistically. This applied to parameters trended 

against generator rotor speed. 

The output of this stage is a set of models that define the 

expected response of each turbine component.  These 

models can then be used for anomaly detection, where live 

turbine data is compared to these models, and deviations 

represent the potential development of a fault within the 

system. 

Region 

1 

Region 

2 

Region 

3 

Region 

4 

Region 

1 

Region 

2 

Region 

3 

Region 

4 

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014

717



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014 

6 

5.1. Curve Fitting 

Curve fitting was applied to data parameters trended against 

output power, where relationships displayed an even spread 

of data across the trend. Initially, this technique was applied 

to the envelope of these trends, as maximum levels of 

vibration varied with output power.  Anomalies would be 

detected in this case by data points exceeding maximum 

expected levels of vibration, lying about a curve fitted to the 

envelope. 

Curve fitting was also applied to describe the trend between 

gearbox vibration and output power as a whole.  This would 

enable additional metrics, such as variance, to be measured, 

with anomalies detected where data points exceeded a 

threshold of distance from the fitted curve. 

Within this study, curve fitting was implemented in 

MATLAB using the ‘Trust-Region-Reflective Least 

Squares’ algorithm.  This is an iterative method that tunes 

parameters              of the chosen function        to 

minimize the squared error between each data point         

and the function itself, equation (1) (Hung, 2012). 

    
 

             
 

 

   

 (1) 

5.1.1. Envelope Fitting 

Within the data from the HS1000 turbine, parameters 

trended against output power displayed varying levels of 

maximum vibration across their envelopes.  Curves fitted to 

these envelopes will therefore describe a threshold of 

maximum expected vibration levels over the full range of 

turbine operation for each parameter, with anomalies 

detected above this threshold.  

An envelope was determined by sampling maximum values 

of output power across a trend.  A curve was then fitted to 

this envelope, describing the expected boundary of a data 

parameter.  Each stage of this process is outlined in figure 

10. 

Functions were chosen to model each parameter trended 

against output power that minimized the root mean squared 

error (RMSE) between the function and the envelope.  Table 

1 summarizes the RMSE values for Gaussian and 

Polynomial functions of increasing orders fitted to the 

envelope of generator vibration Z-axis trended against 

output power.  Gaussian functions of varying order were 

found to best fit the envelopes of all parameters trended 

against output power, with the order number representative 

of the number of peaks across the envelope. 

 

 
(a) 

 
(b) 

 
(c) 

Figure 10. Curve fitting applied to the envelope of a 

generator vibration Z-axis trended against output power.  (a) 

Data parameter trended against output power. (b) Sampled 

envelope across trend. (c) 4
th

 order Gaussian function fitted 

to envelope. 

Table 1. Summary of RMSE values for curve fitting 

applied to envelope of generator vibration Z-axis 

trended against output power. 

Function RMSE 

6th order Polynomial 0.732 

7th order Polynomial 0.727 

8th order Polynomial 0.719 

9th order Polynomial 0.722 

3rd order Gaussian 0.761 

4th order Gaussian 0.709 

5th order Gaussian 0.782 
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5.1.2. Gearbox Vibration Curve Fitting 

Gearbox vibration parameters trended against output power 

displayed all data points varying across the relationship 

(figure 5).  Fitting a curve to describe the relationship as a 

whole would allow for additional measures to be 

determined, such as variance, to reveal additional 

information about the response of the system.  Anomalies 

would be detected in this case by data points exceeding a 

certain distance from the fitted function. 

A number of different functions were fitted to this 

relationship, observed by three seperate vibration sensors.  

Table 2 summarizes the results, including Gaussian and 

polynomial functions, as well as a piecewise linear fit within 

each defined operational region (i.e. four sequential linear 

fits).  The accuracy of each function was compared using 

the RMSE value between the function and all data points 

used to generate the model.  

The Gaussian function was found to best describe this 

relationship returning the lowest RMSE.  This is shown in 

figure 11. 

 

Figure 11. 3rd order Gaussian function fitted to gearbox vibration 

sensor 1 trended against output power. 

5.2. Gaussian Mixture Modeling 

Since the generator rotor speed does not behave as a 

continuous variable (unlike output power), curve fitting 

approaches are less appropriate.  Two techniques were 

employed to define the operational groups of data against 

generator rotor speed: Gaussian mixture modeling and 

kernel density estimation.  Each technique defined regions 

of data by probability.  Deviations from expected response 

of the turbine can be identified as live turbine data occurring 

with low values of probability when compared to these 

models. 

Gaussian mixture modeling is a method used to fit a 

combination of n-dimensional Gaussian distributions, each 

with a given weighting, to an n-dimensional data set 

(Dempster, Laird & Rubin, 1977). This was performed in 

MATLAB through the Expectation Maximisation algorithm 

(Bilmes, 1998).  This method involves making an initial 

‘guess’ (randomly generated within a given range) of 

Gaussian parameters, and calculating the probability of the 

data points within this model.  The model parameters are 

then updated iteratively to maximize the likelihood of each 

data point.  This process is stopped once a threshold of 

convergence is reached. 

Figure 12 details the result of Gaussian mixture modeling 

within a contour plot for the Z-axis component from the 

generator vibration sensor trended against generator rotor 

speed, separated into the four operating regions.  Within this 

plot, outwardly lines represent areas of decreasing 

probability. These plots revealed this method works well for 

regions 2, 3 and 4, where contour lines fit tightly around 

clear groups of data.  However, this technique is not as 

effective for region 1, where data points are spread more 

sparsely throughout the plot. 

 
Region 1   Region 2 

 
Region 3   Region 4 

Figure 12. Contour plot of Gaussian mixture modeling 

applied to the trend between generator vibration X-axis and 

generator rotor speed. 

5.3. Kernel Density Estimation 

Gaussian kernel density estimation is a technique similar to 

Gaussian mixture modeling, used to the same effect within 

Table 2. Summary of RMSE values for curve fitting 

applied to the trend of gearbox vibration against output 

power 

Function 

RMSE 

Gearbox 

vibration 

sensor 1 

Gearbox 

vibration 

sensor 2 

Gearbox 

vibration 

sensor 1 

Linear fit between 

operating regions 
0.204 0.209 0.243 

6th order Polynomial 0.221 0.218 0.238 

3rd order Gaussian 0.203 0.205 0.237 
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this study to define regions of probability between 

parameters.  However, this technique differs as it aims to 

approximate the true probability density function (PDF) of 

the data. 

The true distribution is estimated by computing the sum of 

small individual PDFs at each observed data point (Zucchi, 

2003).  In this case, the Gaussian distribution was used as 

the individual (kernel) PDF.  This method will generate a 

more accurate model, however it is a lot more 

computationally intensive.  This was implemented in 

MATLAB by adapting a method by Cao (2013). 

Figure 13 shows a contour plot describing Gaussian kernel 

density estimation applied to the Z-axis component from the 

generator vibration sensor trended against generator rotor 

speed, separated into the four operating regions.  In 

comparison to Gaussian mixture modeling (figure 12), this 

technique provides a much closer fit to the data, particularly 

within region 1.   

Although this model was more accurate, it produces a less 

general model, treating individual data points lying outside 

the main group of data as separate regions of data. This 

model can be improved by training with as many datasets as 

possible. It is expected that additional data points will fill in 

some of the spaces between separately defined regions.  

Alternatively, smaller groups of data could be removed in 

pre-processing, and the resultant model could be smoothed 

over a larger area. 

 
Region 1   Region 2 

 
Region 3   Region 4 

Figure 13. Contour plot of Gaussian kernel density 

estimation applied to the trend between generator vibration 

X-axis and generator rotor speed. 

6. EVALUATION 

Using the techniques described above, models were 

constructed using training data from October 2013, and 

tested using data from subsequent December, January and 

February.  Appropriate metrics were then extracted to detect 

anomalies and measure the severity of deviations from 

training data.  Although no fault data was available, results 

showed the effectiveness of each technique in defining 

system behavior and observing changes over time. 

6.1. Envelope Fitting 

Envelope fitted models, describing parameters trended 

against output power (as in section 5.1.1.) were tested, 

where anomalies were detected as data points exceeding the 

Gaussian function used to describe the envelope of training 

data. 

Some anomalies were detected as crossing the boundary, 

shown in figure 14.  Using this technique a number of 

metrics can be extracted, including number of anomalies, 

percentage of anomalies and average distance from the 

boundary, to indicate the severity of a deviation from 

normal behavior.  

 

Figure 14. Envelope fitting anomaly detection applied to 

December 2013 test dataset. 

Table 3 summarizes the results of testing this technique, 

with each metric measured for each test dataset.  No 

significant deviations were detected in the test datasets, with 

the total number of anomalies being minimal and average 

distances not being significantly large.  This correctly 

suggests normal behavior. 

 

6.2. Curve Fitting 

The curve fitting modeling technique was tested on the 

relationship between gearbox vibration and output power, 

using a 3
rd

 order Gaussian curve (as in section 5.1.2.).   

Table 3. Envelope fitting test results 

Testing dataset 
Number of 

anomalies 

Percentage 

of 

anomalies 

Average 

distance 

(mm/s) 

December 2013 156 0.1718 % 0.226 

January 2014 36 0.0361 % 0.388 

February 2014 69 0.0418 % 0.355 
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Figure 15 shows the December 2013 testing data compared 

against a trained model constructed from October 2013 data.  

In contrast to envelope model fitting, no set boundary is 

used to indicate anomalous data points.  Instead, metrics 

such as maximum error and RMSE can be used to measure 

the severity of any deviation from normal system response. 

 

Figure 15. Curve fitting anomaly detection applied to December 

2013 test data. 

Table 4 summarizes testing results using these metrics.  An 

increase in RMSE is seen in both December and February 

where more data points are lying above the Gaussian 

function, indicating an overall increase in vibration across 

the full operating range.  This was attributed to seasonal 

changes in tidal flow affecting the test data, and not 

component wear or damage. 

 

6.3. Gaussian Mixture Modeling 

Gaussian mixture modeling was tested on clusters of 

generator vibration data trended against generator rotor 

speed, separated by operational regions, as described in 

sections 4.1. and 5.2.  Results detailed in this section were 

recorded from the generator X-axis vibration parameter. 

Anomalies were considered to be data points lying outside 

the 95% confidence interval.  The percentage of anomalies 

lying outside the 95% confidence interval (CI) was used as a 

metric.  A value exceeding 5% was considered to indicate 

that the model was not a good fit to the test data and a 

change in system response may have occurred.   

Table 5 and figure 16 show the results of testing.  A number 

of clusters were identified to have a significant number of 

anomalies, with percentages exceeding 5%.  These results 

indicate a deviation in system response over time, however, 

the variations were due to seasonal changes in tidal flow. 

The significant number of anomalies is therefore not 

representative of the relatively small variation in data, and it 

was concluded that Gaussian mixture modeling provided a 

poor representation of training data distributions. 

 
Region 1   Region 2 

 
Region 3   Region 4 

Figure 16. Gaussian mixture modeling anomaly detection applied 

to December 2013 test data. 

 

Table 5. Gaussian mixture modeling test results 

Testing dataset Region 

No. of 

Anomalies 

outside 95% CI 

Percentage 

of 

anomalies 

December 2013 

1 59 1.006 

2 1532 4.454 

3 1425 9.799 

4 7180 19.928 

January 2014 

1 88 0.821 

2 347 1.998 

3 194 1.552 

4 10350 19.938 

February 2014 

1 2469 5.776 

2 6031 5.519 

3 1986 15.055 

4 19 52.777 

 

 

Table 4. Curve fitting test results 

Training dataset 
Max Error 

(mm/s) 

RMSE 

(mm/s) 

October 2013 1.45 0.203 

Testing dataset 
Max Error 

(mm/s) 

RMSE 

(mm/s) 

December 2013 1.26 0.251 

January 2014 0.93 0.202 

February 2014 1.04 0.235 
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Region 1   Region 2 

 
Region 3   Region 4 

Figure 17. Kernel density estimation anomaly detection applied to 

December 2013 test data. 

 

6.4. Kernel Density Estimation 

Kernel density estimation was tested on clusters of data 

separated by operating regions as in 6.3.  As with Gaussian 

mixture modeling, anomalies were detected as data points 

lying outside the 95% confidence interval (CI).  Here, the 

confidence interval was calculated using bootstrap 

sampling, as by Chen, Goulding, Sandoz and Wynne 

(1998). 

Table 6 and figure 17 show the results of testing.  In contrast 

to results achieved through Gaussian mixture modeling, the 

number of detected anomalies is significantly less, and 

under 5% in the majority of cases.  This suggests kernel 

density estimation provides a more accurate representation 

of the distribution of data points within each cluster and is 

therefore a more suitable technique for this application. 

6.5. Summary of Results 

Results were obtained to test the effectiveness of a number 

of modeling techniques, used to define the expected 

response of a tidal turbine under normal operating 

conditions.  

Envelope and curve fitting techniques were observed to 

provide a good representation of expected turbine response, 

capable of detecting small seasonal deviations in data over 

time. Gaussian mixture modeling was seen to be less 

effective, detecting a large number of anomalies where little 

deviation occurred.  Kernel density estimation was favored 

over this technique. 

Each anomaly detection technique provides a seperate group 

of metrics to describe anomalous behavior, indicating the 

severity of deviations.  Future work will involve the analysis 

of further metrics to support testing on additional data as it 

becomes available.  

No significant changes in system response were observed 

within test data, with only small variations seen due to 

seasonal changes in tidal flow.  It is therefore recommended 

that models are examined at regular monthly intervals with 

deviations matched against seasonal trends.  Models can 

then be updated accordingly.  

7. DEPLOYMENT  

Since there is no single model which covers all parameter 

relationships, the deployment stage involves using each 

model of expected turbine response in parallel to perform 

anomaly detection of live turbine data.  Each individual 

model can be integrated as part of an intelligent system, 

with seperate models implemented to process data from the 

turbine and output whether or not the data has deviated from 

expected trends.  A decision system linked to these modules 

can then use these results to make assessments of turbine 

health. 

Although anomaly detection is useful as an initial stage of 

condition monitoring, it is only suitable for indicating if a 

deviation from the defined normal behavior has occurred.  

Specific failure modes cannot be identified through this 

method.  Further stages of condition monitoring include 

diagnosis and prognostics. 

Table 6. Kernel density estimation test results 

Testing dataset Region 

No. of 

Anomalies 

outside 95% CI 

Percentage 

of 

anomalies 

December 2013 

1 0 0 

2 108 0.314 

3 499 3.441 

4 1085 3.011 

January 2014 

1 4 0.037 

2 6 0.025 

3 35 0.280 

4 1532 2.871 

February 2014 

1 0 0 

2 99 0.090 

3 777 5.894 

4 10 2.778 
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Diagnosis involves analysis of turbine component failure 

modes, and understanding how these will be represented 

within data parameters.  Prognostics involve assessing the 

current state of the system and estimating the remaining 

useful life of individual components, or the system as a 

whole.  Various algorithms can be used for these purposes, 

including those used within machine learning and artificial 

intelligence, such as neural networks or Bayesian classifiers.  

Future work will explore these algorithms in relation to the 

system, utilizing failure data as it becomes available. 

Diagnostics and prognostics can be implemented as 

additional modules in the intelligent system. 

8. CONCLUSION 

This paper outlined the use of data mining through the 

CRISP-DM process model to explore data from the HS1000 

tidal turbine and define its expected operational behavior.  

The use of principal component analysis and correlation 

revealed key relationships within the data, relating 

parameters to output power and generator rotor speed.   

Envelope and curve fitting techniques were found to provide 

accurate models of the response of system components to 

changes in output power.  Kernel density estimation was 

also found to be an effective technique when used to model 

clusters of generator vibration data formed when trended 

against rotor speed.  Gaussian mixture modeling was found 

to be less effective in this application. 

Models were trained using past operational turbine sensor 

data, with anomaly detection performed using data from 

subsequent months.  Small deviations in system response 

were detected, due to seasonal changes in tidal flow. 

Future work will involve the analysis of further metrics to 

describe the severity of anomalous responses, using 

additional data as it becomes available. Once techniques are 

established, an intelligent condition monitoring system will 

be designed to integrate seperate modules together and 

assess the state of the turbine and its components.  With 

further research, additional modules can be added to the 

intelligent system, to perform diagnosis and prognosis as 

failure data becomes available. 
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